Photography Made Easy

Sylvain Paris, Adobe
Adobe Basel

• Web applications, visual interfaces
• 150 employees, ≈0% attrition
• Internships: 6+ months, e.g., for Masters students

jobs-basel@adobe.com
Photography Made Easy

Sylvain Paris, Adobe
Photo before retouching
After retouching
projector with negative

Printing photos used to be hard
Now with computers, it is a lot easier. But it is still hard... It does not have to be this way.
Many photos can become great after retouching.

I want to make it easy.
How to Make Photo Retouching Easier

• Some people know how to do it: photographers and artists
• There are plenty of examples of good photos available on the web
• Our strategy
 1. Develop algorithms that transfer the statistics of good photos.
 2. Learn how to retouch from examples of good photos
Photographic Style Transfer

Make this photo look like

Tonal Aspects of Look: Global Contrast

Ansel Adams

Kenro Izu

High global contrast

Low global contrast
Tonal Aspects of Look: Local Contrast

Ansel Adams

Variable amount of texture

Kenro Izu

Texture everywhere
Pipeline

Global contrast

Input Image

Decompose

Histogram transfer

“Histogram transfer”

Local contrast

Recombine

Soft focus
Toning
Grain

Result
Naïve Decomposition: Low vs. High Frequency

- Problem: introduce blur & halos

- Low frequency: Global contrast
- High frequency: Local contrast
Edge-Preserving Decomposition: Bilateral Filter

Bilateral filter output
Global contrast

Bilateral filter residual
Local contrast
Photoshop Demo
Local Laplacian Filters

A Better Decomposition

Background on Gaussian Pyramids

• Resolution halved at each level using Gaussian kernel
Background on Laplacian Pyramids

- Difference between adjacent Gaussian levels

level 0

level 1

level 2 (residual)

level 3
Pros and Cons of Pyramids

😊 Useful for compression [Burt 83], texture synthesis [Heeger 95], harmonization [Sunkavalli 10]...

🚢 Believed to be unsuitable for edge-aware processing
 – Use isotropic & spatially invariant kernels
 – But edges are anisotropic & well located
 – “Manipulating pyramids generate halos”
 ▶ We show otherwise.
Two-scale Alternatives

• Dedicated schemes to account for edges
 – Anisotropic diffusion [Perona 90], bilateral filter [Tomasi 98], weighted least squares [Farbman 08]...
 – Sophisticated tools: PDEs, spatially varying kernels...
 – All work well for standard applications
 – But parameters can be difficult to set, some may have edge artifacts...
Pyramid Approaches

• Iterated filters [Fattal 07, Farbman 08]
 – Same pros and cons as two-scale versions

• Edge-avoiding wavelets [Fattal 09]
 – Decorrelate pyramid coefficients

• Smooth gain maps [Li 05]
 – Preserve coefficient correlation
 – Works well with Haar wavelets, not great with Laplacian pyramids
Our Contributions

• **Edge-aware editing with Laplacian pyramids**
 – We use a classical multi-scale representation

• **Robustness**: strong effects, no artifacts
 – We achieve extreme enhancements where other methods fail
Our Strategy: Local Adaptation

1. Generate an image that looks good for a small neighborhood
 – It may look bad elsewhere

2. “Combine data from all neighborhoods”
Example: Local Contrast Increase
Example: Local Contrast Increase
Example: Local Contrast Increase

input

output with local contrast increased
Simple Local S-shaped Curve

output

input
Only Local Result Matters

- Artifacts appear elsewhere
- Not a problem, we use only local data

The processed image only needs to look good locally

output with local contrast increased
Naïve Stitching

- Paste local results side by side?
 - Visible seams, artifacts...
 - Possible heuristics: vary patch size, smooth seams...
 - But *ad hoc* and brittle
Our Multi-scale Approach

• We build the Laplacian pyramid of the output coefficient by coefficient

For each coefficient

1. Generate “locally good” image
2. Compute Laplacian pyramid of that image
3. Copy coefficient to output pyramid
Illustration

Output
Laplacian pyramid

- Level 0
- Level 1
- Level 2

input image
Illustration

Output
Laplacian pyramid

level 2

level 1

level 0

input image
Illustration

Input image → “locally good” image → Output Laplacian pyramid

- Level 0: Full resolution image
- Level 1: Coarse representation
- Level 2: Even coarser representation

Output: A hierarchical representation of the image, with each level providing a coarser approximation of the original.
Illustration

Output
Laplacian pyramid

level 2
level 1
level 0

input image
“locally good” image
partial pyramid
Illustration

Output
Laplacian pyramid

Copy

level 2

level 1

level 0

input image

“locally good” image

partial pyramid

40
Illustration

Input image

Output Laplacian pyramid

- Level 0
- Level 1
- Level 2

41
Illustration

Input image → “locally good” image → partial pyramid

Output
Laplacian pyramid

- level 0
- level 1
- level 2

Copy
Possible Nonlinearities

• Detail manipulation
Possible Nonlinearities

• Detail manipulation
Possible Nonlinearities

• Dynamic range manipulation
Possible Nonlinearities

• Can be combined, e.g. tone map + boost details
Photoshop Demo
Back to Photo Style Transfer

New Transfer Algorithm
old algorithm

new algorithm

* a lot more details
* higher quality
Takeaway message #1

Photo style transfer works.

Takeaway message #2

Low-level aspects matter.
Learning from a Dataset

5000 reference photos adjusted by a pro
5000 reference photos adjusted by a pro

our result
Result

input photo

our version

photographer’s version
Result

input photo

photographer’s version

our version
Product Impact

• Transferred into Photoshop CS6 as “Auto” in Brightness & Contrast, Levels, Curves, and Auto Tone.

• Can also learn from users on the fly, transferred as Auto Smart Tone into Photoshop Elements 12.
Advantages of Gaussian Processes

• Can learn from a few hundred examples “only”
 – Hours of work by a professional → quality training data

• Revert to the mean when “unsure”
 – Does not ruin the image

• Easy to debug by looking at how training data are used
Back to Transferring from an Example
Previous Techniques Fail on Portraits

- Two-scale model not sufficient for skin texture
- Image-level statistics too coarse for portraits
Make this portrait look like this one

A Local and Multi-scale Model

Input

Target
A Local and Multi-scale Model

1. Construct Laplacian stacks for the input and the example

Input

Target
A Local and Multi-scale Model

1. Construct Laplacian stacks for the input and the example

2. Local match at each scale
A Local and Multi-scale Model

1. Construct Laplacian stacks for the input and the example

2. Local match at each scale

3. Collapse the matched stacks to create the output of this step
Result (Plato)

input

output

example
Result (Martin Schoeller)

input

output

example
Input sequence with extreme facial expressions

Our style transfer result using the example in the gray box
Transferring Other Properties

Time-of-Day Hallucination

Shih et al. "Data-driven hallucination of different times of day from a single outdoor photo." ACM Transactions on Graphics (2013)
Time-lapse Videos as Examples

• A database of 400+ time-lapse videos
• Shows how scenes change during the day
Input photo
Our result
Step #1: off-the-shelf scene matching
Step #2: frame matching using histogram similarity
Step #3: pixel-level matching with custom MRF
Step #4: transfer locally affine color transforms (least-squares optimization)
Our result (golden hour)
Deep Photo Style Transfer

A First Step Toward a Unified Approach

Motivation

• A Neural Algorithm of Artistic Style [Gatys et al. 2016]

• Several apps and websites
 • Prisma
 • DeepArt.io
The neural style algorithm works well for paintings.

What about photos?
So we tried…

Input

Model

Output of Neural Style Transfer
Two Problems to Solve

• Undesired distortion
 • Result still looks like a painting, not a photo

• Semantic mismatch
 • E.g., ground texture can appear on the sky
Background on Neural Style Transfer

1. Decompose the input and model images using a neural network

Diagram from http://www.justindchien.com/
Background on Neural Style Transfer

1. Decompose the input and model images using a neural network

2. Impose some of the statistics of the model image
Background on Neural Style Transfer

1. Decompose the input and model images using a neural network

2. Impose some of the statistics of the model image

3. Reconstruct the output image
Background on Neural Style Transfer

1. Decompose the input photo using a neural network

2. Impose some of the statistics of the model image

3. Reconstruct the output image

Preventing distortion
Preventing Distortion

• We tried many options
 • Constraining the gradients
 • Multi-scale constraints akin to Portrait Style Transfer
 • Band-limiting the transformation

• All helped but none was 100% successful

• What worked was forcing the color transformation to be locally affine
 [Levin et al. 2006]

\[
\begin{pmatrix}
 r_{out} \\
 g_{out} \\
 b_{out}
\end{pmatrix} = A_{3 \times 3} \begin{pmatrix}
 r_{in} \\
 g_{in} \\
 b_{in}
\end{pmatrix} + B_{3 \times 1}
\]
Output of Neural Style Transfer

Neural Style Transfer + Locally Affine Transformation
Background on Neural Style Transfer

1. Decompose the input photo using a neural network

2. Impose some of the statistics of the model image

3. Reconstruct the output image

Preventing spillovers
Our Strategy to Ensure Consistent Matching

1. Run semantic segmentation on input and model [Chen et al. 2016]
 • Merge “visually equivalent” categories, e.g., sea and lake
 • Constrain the input labels to be a subset of the model labels

2. Transfer statistics within each category, e.g., sky to sky
Output of Neural Style Transfer
Output of Neural Style Transfer + Locally Affine Transformation
Our result: Neural Style Transfer + Locally Affine Transformation + Semantic Matching
Our result: Neural Style Transfer + Locally Affine Transformation + Semantic Matching
Neural Style Transfer
Our result
Our result

Portrait Style Transfer
Histogram transfer (Pitié et al.)

Neural Style (Gatys et al.)

CNNMRF (Li et al.)

our algorithm

Photorealism scores

not photorealistic photorealistic

1 2 3 4

3.14±0.38

1.46±0.30

1.43±0.37

2.71±0.20

5.8%

3.14±0.38

2.9%

86.8%
Photorealism scores:

- Histogram transfer (Pitié et al.): 3.14 ± 0.38
- Neural Style (Gatys et al.): 1.46 ± 0.30
- CNNMRF (Li et al.): 1.43 ± 0.37
- Our algorithm: 2.71 ± 0.20

Style faithfulness preference:

- Histogram transfer (Pitié et al.): 5.8%
- Statistics transfer (Reinhard et al.): 4.6%
- Photoshop Match Color: 2.9%
- Our algorithm: 86.8%

Disclaimer: specialized algorithms like to perform as well or better.
What’s next?
Deep Photo Style Transfer is only a First Step

• Vast algorithm design space to explore

• Many questions to answer
 • Why a network trained for classification? Can we do better?
 • “Spillovers are obvious”, can we fix them without a full semantic analysis?
 • Where does the distortion come from?

Background on Neural Style Transfer

1. Decompose the input and model images using a neural network
2. Impose some of the statistics of the model image
3. Reconstruct the output image
Learning Creative Edits from Experts

- Challenge #1: experts cannot create 1 million+ photos for training a CNN
- Challenge #2: the range of effects is large
- Challenge #3: not all styles apply to all photos
A Great Photo from Every Shot
Better Photos, Easily
Photo Style Transfer

• A simple and powerful way to edit photos
• Challenges us to better understand images
 • What is style? What is content?
 • What makes an image look like it does?
 • How to preserve the image structure?
• What I did not show: videos, panoramas, weather, lighting, perception, performance...
Thanks!

Nothing would have been possible without my collaborators: Mathieu Aubry, Soonmin Bae, Kavita Bala, Connelly Barnes, Adrien Bousseau, Vladimir Bychkovsky, Eric Chan, Jiawen Chen, Jeff Chien, George Drettakis, Frédéric Durand, Bill Freeman, Sam Hasinoff, Jan Kautz, Fujun Luan, Eli Shechtman, and Yichang Shih